Navigation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Producing Solar Energy Materials That Are Affordable |
|
|
Most portable electronic devices need to be charged periodically. Typically,Support for installing a solar inverter. this means plugging them into an electrical source--and being patient. Imagine how convenient it would be if you could just slip that cell phone into your pocket and have it charge every time you went out into the sun.
Jinsong Huang, assistant professor of mechanical and materials engineering at the University of Nebraska-Lincoln, believes that day will come, and he is working to ensure it happens sooner rather than later.
"We really need to increase the availability of renewable energy sources," says the National Science Foundation (NSF) funded scientist. "Fossil fuels are finite, and they aren't good for the environment. We have a never-ending supply of solar energy,Let's explore the option of flat roof racking. which is abundant, free and clean, but we have to use it in ways that are more efficient and more affordable than what is currently available."
His research goal is to ensure that almost any surface, including windows, walls, even computer bags and clothing, will be specially treated and have the ability to tap into the power of the sun, providing energy that is just as efficient and much less expensive than the solar panels in use today.
"The idea is to put it on the surface of something we already have--a wall, for example, or articles of clothing,We are responsible for emergency light and illuminated signs and bollards on our roads. or on the device itself," he says. "You could leave the device sitting in the sun. Or clothing could be use to charge a device in your pocket."
The current market is dominated by semiconducting silicon solar cells sandwiched between two metal electrodes that creates an electric field. One electrode is transparent, allowing light to pass through it.We makes possible ballasted ground mount in Ontario just better than your imagination. The photons in sunlight knock loose the semiconductor's negatively charged electrons, which migrate within the system's electric field to form a current that produces electricity. The system is efficient, but limited in its applications and very expensive.
Scientists have been trying to replace current silicon cells with organic polymers, or plastics, which are less expensive and have more flexible applications, but are not as efficient.
Organic polymer solar cells are cheaper to make than silicon-based cells because the material and fabrication costs are less. These polymers can be coated on many surfaces in the same way as spray paints and inkjets, allowing manufacturers to produce solar cells as quickly and easily as printing off the daily newspaper, according to Huang.
The material's pliability also could lead, ultimately, to replacing large, expensive solar panels atop buildings and poles. Instead,The pre-assembled Solar carport can be installed and fitted from above to any desired point on the channel. future solar cells could find their way into clothing, laptop bags and tents, or even pasted onto building windows.
Huang's team is trying to enhance their efficiency by placing a layer of ultrathin ferroelectric polymer, a building material often used in insulation, between the polymer and each electrode.
"At the first glance, it is surprising that an insulating plastic material can be used to enhance the efficiency of a polymer solar cell, because generally it makes the device worse," Huang says. "Our innovation lies in utilizing the large permanent electrical polarization of a ferroelectric polymer to increase a solar cell's internal electric field, thus generating more electricity.
"We designed a unique device structure so that these insulating layers facilitate the generation of more electric currents instead of less," he adds. "Also, this method won't add any cost to the polymer solar cells."
|
|
|
|
|
|
|
Today, there have been 48 visitors (66 hits) on this page! |
|
|
|
|
|
|
|