solargardenlight
  Batteries included?
 

The first test of any combination of substances that comes out of the Materials Project, or anywhere else, will be to beat the most successful electricity-storage device to emerge over the past 20 years: the lithium-ion battery. Such batteries are now ubiquitous. Most famously, they power many of the electric and hybrid-electric cars that are starting to appear on the roads. More infamously,High-efficiency 7.5kW Off Grid solar inverter manufactured for unique Indian conditions. they have a tendency to overheat and burn. Two recent fires on board Boeing’s new 787 Dreamliners may have been caused by such batteries or their control systems. Improving on lithium-ion would be a feather in the cap of any laboratory. 

George Crabtree, JCESR’s newly appointed director,We makes possible ballasted flat roof racking in Ontario just better than your imagination. thinks such improvements will be needed soon. He reckons that most of the gains in performance to be had from lithium-ion batteries have already been achieved, making the batteries ripe for replacement. Jeff Chamberlain, his deputy, is more bullish about the existing technology. The home is served simultaneously by the residential wind turbines and the utility. He says it may still be possible to double the amount of energy a lithium-ion battery of given weight can store, and also reduce its cost by 30-40%. 

This illustrates the uncertainty about whether lithium-ion technology, if pushed to its limits, can make electric vehicles truly competitive with those run by internal-combustion engines, let alone better. McKinsey, a business consultancy, reckons that lithium-ion batteries might be competitive by 2020 but, as the chart below shows, there is still a lot of work to do. Moreover, pretenders to lithium-ion’s throne are already emerging. 

The leader is probably the lithium-air battery, in which metallic lithium is oxidised at the anode and reduced at the cathode. In essence, it uses atmospheric oxygen as the electrolyte. This reduces its weight and means its energy density is theoretically enormous. That is important. One objection to electric cars is that petrol packs six times more joules of energy into a kilogram than a battery can manage. Bringing that ratio down would make electric vehicles more attractive. 

The lithium-air approach has consequently generated a lot of hype. It has problems, though, which will take years of research to resolve. Lithium-air batteries are hard to recharge and extremely temperamental. The chemical reaction which powers them is not far removed from spontaneous combustion. Lithium-air batteries are thus highly inflammable and require heavy safety systems to stop them catching fire. 

Luckily, the researchers at JCESR have other irons in the fire. One is the multivalent-ion battery. A lithium atom has but a single electron available for chemical reactions. A magnesium atom, by contrast,A complete range of of professional washer extractor that are redefining laundry systems. has two such valence electrons, and an aluminium atom three. 

Theoretically, says Dr Chamberlain, this means it might be possible get two or three times as much energy out of a magnesium or aluminium battery. Though these metals are not as light as lithium (nor as electropositive, to use a piece of chemical jargon that is pertinent to the argument), their extra valence electrons increase the amount of energy they can store, thus pushing them forward in the competition with petrol.Men's stainless steel ring are very sturdy and will stand the test of time. They are also cheaper than lithium. And safer. Their ions, however, are harder to move around inside a battery, which is why they have not been used much in the past, and this is where new materials will need to be sought out. 

The second transformation, besides electric cars, that better batteries might bring about is what is known as grid-scale storage. If this could be done cheaply enough it would revolutionise the economics of wind and solar energy by making the main problem with such sources—that the sun does not always shine and the wind does not always blow—irrelevant. To this end, Argonne’s researchers are working on what are known as flow batteries.

 
 
  Today, there have been 14 visitors (37 hits) on this page!  
 
This website was created for free with Own-Free-Website.com. Would you also like to have your own website?
Sign up for free